
From comparison of the calculated values of a according to the different formulas (see 
Fig. 2), one can see that the spread in values is smaller and better describes the experimen- 
tal data for the cube-cube elementary cell. The value of ~ can be calculated approximately 
for a structure with isolated inclusions using (55) and (59) and taking the average ~ = 1/2. 
(a' + ~"). 

NOTATION 

sij' deformation tensor; oij, stress tensor; Cijk~, elastic modulus tensor; Sijkl, com- 

pliance tensor; ~kl, thermal expansion tensor; T, temperature; V, volume; r = xli + x=j + 
x3k, radius vector; xl, x=, x3, coordinates; E, Young's modulus; ~, shear modulus; ~, Poisson 
coefficient; m i = Vi/V, volume concentration of the i-th component; Si(Xk), cross-sectional 
area of the sample occupied by the i-th component and perpendicular to the x k axis; Si(xk) = 
Si(Xk)/S(Xk) ; S(xk) = S1(x k) + S=(Xk) ; Li(xi, xj), length occupied by the i-th component, per- 

pendicular to the x i and xj axes; ~i(xi, xj) = Li(xi, xj)/L(xi, xj); L(xi, xj) = L1(xi, xj) + 

L2(xi, xj). 
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TEMPERATURE CONDITIONS OF THE INTERACTION OF A 

MEDIUM WITH A THIN INCLUSION 

I. Z. Piskozub and G. T. Sulim UDC 536.24.02 

A mathematical model of a thin linear inclusion (layer) with a heat-liberating or 
thermally insulated surface is proposed for the calculation of the temperature 
in arbitrary bodies. 

The influence of thin linear inclusions on the thermophysical state of a plane medium was 
studied in [1-5] using conditions of idealized thermal contact, modeling a thin intermediate 
layer of constant width. In [6], a different approach to such problems was proposed, consist- 
ing in modeling the inclusion in a piecewise-homogeneous plane by lines of temperature discon- 
tinuity. The temperature and temperature fluxes at an arbitrary point of the medium are com- 
pletely determined [6] by the discontinuity functions. The formulation of these expressions 
in the condition of interaction of the medium with the inclusion, relating the values of the 
temperature and heat flux at opposite boundaries of the inclusion, gives a singular integro- 
differential equation for the desired temperature-discontinuity function [6-8]. On the basis 
of [9-10], it may be asserted that it is more accurate to model the inclusion by means of two 
discontinuities, in the temperature and in the heat flux, since in this case heat transfer 
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0022-0841/83/4406-0667507.50 �9 1983 Plenum Publishing Corporation 667 



3. 

7 

~2 

,9 

0 

L-___' 
,7 

/ 2  

e ,  , 

qs a qs xl~,- 

Fig. i. Variation in the dimensionless 

quantity %[t~(x) -- tT(x)]/q along the in- 
clusion: a) when Xo/X = 0.i according to 
models II (i), IV (2), and VI (3), and 
when Xo/% = i0.0 according to II (4), IV 
(5), and VI (6); b) when Xo/% = 0 accord- 
ing to II, IV, VI (7), when %o/% = 1 ac- 
cording to II, IV (8), and VI (9), and 
when %o/k = ~ according to II, IV (i0), 
and VI (Ii); 12) variation in the dimen- 
sionless quantity %[t1(x, --h) -- t1(x, h)]/q 
along the abscissa. 

along the axis of the inclusion is taken into account. This approach requires the use of two 
independent conditions of interaction, which would more completely express the physical prop- 
erties of the inclusion. Formulating the results of [9], taking account of the analogy of 
[i0], in such conditions leads to a system of integral equations determining the discontinuity 
functions, and consequently completely solving the given temperature problem. These interac- 
tion conditions in fact constitute the mathematical model of the inclusion: the use of par- 
ticular interaction conditions allows inclusions of corresponding thermophysical type to be 
investigated. Thus, within the framework of the approach of [6, 9], the most important prob- 
lem is the construction of relatively simple but sufficiently complete interaction conditions, 
allowing particular properties of the real layers to be taken into account. 

Consider an inclusion of small width 2h(x) and thickness 8, symmetric with respect to its 
median line, which lies along the line L = [-a, a] (Fig. i). Suppose that the temperature 
t(x, y) of the matrix (an arbitrary medium) is written in the form 

l (x, g) = t~ (x, y) + t2 (x, ~), (1) 

where t1(x, y) is the basic temperature field corresponding to the heat-conduction problem in 
the absence of inclusions and heat sources on the abscissa and t2(x, y) is the perturbation of 
the temperature field due to the presence of inclusions and heat sources. 

Quantities pertaining to the inclusion will be denoted by the subscript O. The boundary 
values of the functions when the argument tends to L from above and below will be denoted by 
the superscripts + and --, respectively. 

Between the inclusion and the matrix, over the whole thickness, there is ideal thermal 
contact 

to (~, + h )  = t (~, + h ) ,  

(x r L), 

;% Oto (x, -a-h) __ ~ + Or(x, 4-h)  
ay @ 

(2) 
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Using the hypothesis of a small inclusion width, it may be written that 

ato (x, +_h) 2+_+_ to (x, +_.h) - -  to (x, o ) ,  
8y h 

t (x, +_+_ h) ~ t, (x, •  + t I (x). 

(3) 

To simplify the mathematical analysis of the problem (with no significant loss in generality), 
the contact line of the inclusion with the matrix is taken to be L 

at (x, +_h) at +- (x) 
~ (4) @ av 

Using Eqs. (2) and (3), the first condition of interaction of the medium with a thin linear 
inclusion is obtained, taking account of its geometry: 

~+ art (x) at 7 (x) 
~- ~.- ~o It+ (x) - -  t 7 (x)l/h (x)= F (x), (5) 

09 Og 

where 

at? (x) 
F (x) = --2~ +- a ~  + %0 [h (x, h) --  l~ (x, --h)l/h (x). (6) 

Taking into account that t i(x, _+h)--~__t~ (x)_+ h(x) - -  
at~ (,) 
ay 

, it follows that 

�9 [ ~o 0"+>)] o f f  (x) 
F ( x ) =  2n-+ 1 ~ J av (7) 

In some investigations, in particular [Ii], the model adopted rests on the hypothesis 
that the heat flux through the inclusion is proportional to the temperature difference at its 
boundaries, taking no account of its real width, i.e., all the conditions of thermal contact 
have been taken at the axis of the inclusion, which leads to simpler but less accurate rela- 
tions: in the interaction conditions in Eq. (5), the right-hand side then takes the form [ii] 

F (x) = - 2)F- a t f  (x) 
Ov 

The heat balance equation for the elementary volume takes the form 

d q___!_ ~ d q y q ~ 
dx + --~y + --g- + qo (x, V ) = 0 ,  

(8) 

(9) 

where qx, qy, qn are the heat fluxes in the directions x, y, n; qo(x, y) is the density of 
the heat sources. 

Suppose that the heat transfer at the side surfaces of the inclusion satisfies the law 
qn = f(x, y, to, s, B, ...). Then, using Fourier's law [12], it follows that 

f(x, y, to, ~, ~ . . . .  ) +  qo(x, y) kto (x, V ) .  O. (lO) 
6~o ~o 

In the particular case when f(x, y, to, t e, so) = so(to -- t e) (Newtonian heat transfer)~ 
Eq. (i0) coincides with the heat-conduction equation for a plate with a temperature field that 
is symmetric with respect to its median plane. 

Averaging Eq. (i0) with respect to y and integrating with respect to x, it is found that 

2Lob (x) [ Ot~~ (x) 
[ Ox 

ate~ ax(--a) ] + Xo liar~ ~@' h) ato @,ay--h) d~ --  
- - a  
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x 

- -  2 j 'h  (%)[fc (~)/6 - -  q~) (~)l d~ = O, 
(II) 

where 

h 

--, f(~, y, to, o~, p .... ), qo(~, y)} dy. 

Taking account of Eq. (2), the assumption 

Ot (x, +_h) Ot+ (x) Otto(x) 1 [ Oto (x, h) Olo (x, --h) ] 
Ox ~-- Ox ', Ox ~ 2 L T + -  ox J 

and Eq. (4), the second condition of interaction between the medium and a thin linear heat- 
extracting inclusion is obtained, taking account both of the heat loss from the side surface 
of the inclusion and the heat transfer along its axis 

~oh(x) Ot+(x) ~ Ot-(x) 2 - -  + 
Ox Ox Ox 

(12) 
~ ~ ~ -  ~ d~ - -  2 h (~) if  ~ (~)/8 - q~ (g)l a ~ = o  (xCL). 
Oh' OF 

- - - a  - - i t  

The quantity [~t~(-~)]/(3x) may be determined from certain a pr'~ov'~ assumptions. 
ticular, it may be assumed that 

max (Z~, k~) max (-~, ~o) ' / c)x 

In par- 

which ensures accurate satisfaction of the interaction conditions in the readily analyzable 
limiting cases. 

When x = a, Eq. (12) takes the form 

~+ Ot~-(x) ~ - ~  dx = 2 h (x)[}~(x)/~--q~(x)l  dx_~Q ( 1 4 )  
Oy Oy 

L L 

and determines the amount of heat Q liberated through the side surface of the inclusion in 
unit time on account of heat transfer. 

A simpler version of the second interaction condition may be proposed. Suppose that the 
inclusion is thermally orthotropic (Xo x = 0), i.e., there is no heat propagation in the longi- 
tudinal direction, which may be the case in the presence of insulating barriers in the inclu- 
sion, e,g., in the transverse motion of a liquid heat carrier inside a set of practically 

heat-impervious channels. In fact dq~ 02to - -  )~0x -- 0 in this case, and Eq. (i0) takes the 
dx Ox 2 

form 

02to (x, ~) 

09 ~ 
f (x, y,  to, or 13 . . . .  )/(Sko) + qo(x, y)/Xo = O. (15) 

Averaging over y results in a simplified version of the second interaction condition for 
the medium and a thin heat-extracting inclusion 

[~+ Ot~(x) Ot2(x) ] - -  2h(x) [fC{x)/a--q~o (x)l ---- O. (16) 
Oy ~- O----~ 

The conditions obtained in Eqs. (5) and (12) or (16) form six basic complete mathematical mod- 
els of a thin heat-extracting inclusion: I) Eqs. (5), (6), (12); II) Eqs. (5), (6), (16); 
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I I I )  Eqs. (5) ,  (7),  (12); IV) Sqs. (5) ,  (7) ,  (16); V) Eqs. (5),  (8) ,  (12); VI) Eqs. (5),  (8),  
(16). Model IV was tested in [6-8], and model VI, in the case with no heat transfer, in [II]. 

In particular, it is interesting to consider the possible limiting cases of the equations 
of model I, which give the most complete and accurate description of an inclusion of homoge- 
neous isotropic material: 

a) ko = 0 (thermally insulated inclusion) 

~+ at+ (x) at- (x) 
- -< ) ~ - - -  o, 

@ @ 

k+ at; (x~ o~ T (x) 
Og oF 

(17) 

(18) 

It is taken into account here that the presence of heat sources and heat transfer from the 
surface of such a layer is physically meaningless. 

b) Io = oo (absolutely heat-conducting inclusion) 

t7 (x) - -  t 7 (x) + h (x, , 'O-h  ( x , - h )  = o, 

oI~ (-a) at+ (x) + a t -  (x) 2 - o. 
"O~ Ox Ox 

(19 

(2o) 

It may readily be noted from Eq. (19) that t(x, h) -- t(x, -h) = 0, i.e., the temperature. 
inside the inclusion is unchanged over the width. Then Eq. (20), when 3tc(-~z)/Dx = 0, ensures 
constancy of the temperature along the axis of the inclusion. The latter requirement must be 
taken into account in a pr~.op~ relations of the type in Eq. (13). 

c) Xo = X+ = I- = X (thermophysical equivalence of the materials of the inclusion and 
the matrix) 

[ Ot+ 2 (x) OtT(x) ]=2h(x )Ol~(x )  [h(x, h)-- t~(x,--h)]  
t+ (x) - -  t ;  (x) - -  h (x) L OV -~ Oy j 09 

or if t~(x, • is expanded in Taylor series on the right-hand side 

a (x, h) - t~ (x, --h) o (h~) ~ 0, 

i.e., in fact there is no perturbation of the temperature field 

(2l 

[ Ot%(--a)] r  dtT(~) 2h(E) [!~(~) ]} h(x)  0t+(x) at =(x) 2 - -  + - ~ q%(~) a~ =0. (22 
Ox v Ox Ox , O/ Oy k 8 j 

- - a  

I t  i s  qu i ck ly  ev iden t  t h a t  in  t h i s  case i t  i s  r equ i r ed  t h a t  3t~(--~)/3x = ? t l ( - - a ) / 3 x ,  
which must a l so  be taken i n t o  account  in a pp{ors  r e l a t i o n s  of the type in Eq. (13). The 
o the r  models,  apa r t  from I I i ,  do not  permit  a c c u r a t e  r e a l i z a t i o n  of the l i m i t i n g  cases so 
comple te ly .  

The given method permi ts  the g e n e r a l i z a t i o n  of the i n t e r a c t i o n  c o n d i t i o n s  ob ta ined  for  
the medium and the t h i n  l i n e a r  h e a t - e x t r a c t i n g  i n c l u s i o n  to the case of a c u r v i l i n e a r  l o n g i -  
t u d i n a l  ax is  of the i n c l u s i o n  and a l so  to the nons teady  ease .  

As an example, cons ide r  the plane s t eady  h e a t - e o n d u c t i o ~  problem n e g l e c t i n g  hea t  t r a n s f e r  
through the s ide  s u r f a c e s  fo r  a homogeneous (X + = X- = X) p l a t e  wi th  a t h i n  i n c l u s i o n  of e l -  
l i p t i c a l  form h(x) = 0.1~a 2 ..... x 2, taking account of the action of a heat source of power q at: 
the point (0, a). Using the given method [6, 9], the heat-conduction problem for plane media 
with thin linear inclusions is solved by comparing models II, IV, and VI from the viewpoint 
of their applicability for the investigation of inclusions with different thermophysical prop- 
erties. Analogously to [6, 9], systems of integrodifferential equations that may be solved 
by the method of orthogonal Chebyshev polynomials with an accuracy of up to 1% may be con- 
structed. Since the heat transfer through the side surface of the inclusion is neglected, 
the discontinuity of the heat fluxes of the perturbed temperature field, within the framework 
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of the given models, is zero. The results of comparing the values of the discontinuities in 
the perturbed temperature field obtained using models II, IV, and VI as a function of the di- 
mensionless parameter %o/% are shown in Fig. i. Models II and IV are very satisfactory in the 
limiting cases ho = 0, ~o = ~, and ho = ~; model II provides relatively more accurate results 
as ho § = and model IV when %o-----~%. The difference in the results when models II and IV are 
used is no more than 1-3%. Use of model VI is expedient only in the case %o----- 0, since when 
ho > 0.5h the error in comparison with the more accurate models II and IV exceeds 100%. Note 
that, when ho ~---0, the choice of model is unimportant, since all the models give practically 
identical results. With variation in the distance of the heat source from the inclusion, the 
qualitative picture of the comparison of the models remains the same. 

NOTATION 

x, y, Cartesian coordinates; h(x), halfwidth of inclusion; ~, thickness of inclusion; a, 
halflength of inclusion; L = [--a, a], median line of inclusion; to(x, y), t(x, y), temperature 
inside and outside inclusion; ~o, ~, thermal conductivity of inclusion and matrix; h +, ~-, 
t~(x), limiting values of % and the functions tj(x) (j = I, 2) at the abscissa when y > 0 and 
yO< 0; n, external normal to the plane of the inclusion; qx, qv, qn, heat fluxes in the direc- 
tions x, y, n; qo(x, y), density of heat sources in the inclusion; a, ~, ..., parameters of 
the external medium; Q, rate of heat transfer through the side surface of the inclusion; so, 
heat-transfer coefficient; te(X , y), temperature of the external medium; box, thermal conduc- 
tivity in the direction x of a thermophysically orthotropic inclusion; q, power of source; ~, 
~, arbitrary exponents in the a priori relations. 
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